January 27, 2014

Resolving SQLGrammarException using JPA @ManyToOne and @OneToMany Relationships

Abstract
So let's say your database has a simple parent-child relationship such as the relationship between a user and their addresses.  A single user can have many addresses so it is a one-to-many relationship from the point of view of the user; a many-to-one relationship from the point of view of the address.  You model this with JPA entities as follows:

Listing 1: User entity with collection of Address
@Entity
@Table(name = "app_user")
public class User implements Serializable {
    @EmbeddedId
    UserKey key;

    @OneToMany(mappedBy="user", fetch=FetchType.EAGER, cascade=CascadeType.ALL)
    Collection<Address> addresses;
}

In listing 1, you can see the @OneToMany annotation is used in the User class (#2) because from the point of view of a user, a user can have multiple addresses .  Recall this annotation is used on the owner of the relationship.

Listing 2: Address entity with parent User
@Entity
@Table(name = "app_address")
public class Address implements Serializable {
@EmbeddedId
    AddressKey key;

    @ManyToOne
    private User user;
}

In listing 2, the Address entity uses the @ManyToOne annotation (#2) because from the address point of view, an address can only have one user. That's it, real simple JPA config.

So after coding this up, you start your integration tests.  A test attempts to select data from the database and build a User/Address object tree. Immediately you run into a problem. The SQL generated is not valid and you get a SQLGrammarException complaining about some column which does not exist. listing 3 shows some of what the stack trace may say:

Listing 3: SQLGrammarException stack trace
javax.persistence.PersistenceException: org.hibernate.exception.SQLGrammarException: could not load an entity: 
  .
  .

  Caused by: org.hibernate.exception.SQLGrammarException: could not
  load an entity: [org.ferris.resolving.sqlgrammarexception.User#
  .
  .
  Caused by: java.sql.SQLSyntaxErrorException: Column
  'ADDRESSES1_.USER_BIRTHDAY' is either not in any table in the 
  FROM list or appears within a join specification and is outside
  the scope of the join specification or appears in a HAVING clause
  and is not in the GROUP BY list.

You look at this stack trace, you see Column 'ADDRESSES1_.USER_BIRTHDAY', and the $10,000 question is where is JPA getting this column? It doesn't exist in your database and none of your entities reference a column with this name.  You wired up your JPA entities with annotations in the exact way the book tells you to, so everything should work. Isn't that right?  The purpose of this article is to explore why you get this SQLGrammarException and how to resolve it.

System Requirements
The code was developed and run using the following system setup. If yours is different, it may work but no guarantees.
  • JDK 1.7.0_17
  • NetBeans 7.3.1
  • Maven 3.0.5 (bundled with NetBeans)
The rest of the software dependencies can be found in the project's pom.xml

Download Project
If you just want to look at the project demonstrating the solution, download the code example from GitHub (https://github.com/mjremijan/JPATest).

Run Project
The project is a standard Maven setup.  Simply execute mvn. The project contains Maven integration tests which are NOT run during the unit testing phase of the Maven lifecycle. So executing mvn test won't run the example.

The code is configure so the integration tests will pass and you will not get the SQLGrammerException. You can mess around with the JPA annotations on your own an explore all the wonderful exceptions you can get.

Why the SQLGrammerException ?
To understand why you may be getting an SQLGrammarException, you really need to understand the difference between artificial and natural primary and foreign keys for database tables. It's in the keys that the problem lies.  So let's take a look at these keys.

When studying JPA, you learn the @ManyToOne and @OneToMany annotations can be used to establish a bi-directional relationship between entities. Typically, examples demonstrating how to code this relationship with JPA use very simple artificial primary and foreign keys. As a reminder, an artificial primary key is a column added to a database table which only exists to make rows in the table unique and as such is completely independent of the data stored in the table.  Artificial keys are typically Java long primitive values. Each table in the relationship typically has its own artificial key.  An artificial key relationship is shown in figure 1.

Figure 1: An artificial key database relationship 
Database relationships are sometimes this simple, but not often. This is especially true with legacy systems or any system which favors a natural primary and foreign keys.  As a reminder, a natural primary key specifies the column (or the combination of columns) of the data which make a row unique. A natural key relationship is shown in figure 2.

 Figure 2: A natural key database relationship
Natural keys are almost always a combination of columns because it's the combination of data that's needed to make the row unique. Using natural keys with multiple columns in JPA is not that difficult, but there are some challenges. If you don't do it right, you will get the SQLGrammarException

Now that you got a quick review of artificial and natural keys, let's take a look at how this is contributing to our problem. First look at the error message again.

Column 'ADDRESSES1_.USER_BIRTHDAY' is either not in any table. . .

ADDRESSES1 indicates the problem is with the Address entity. So that makes sense. Now referring back to listing 2, the Address entity has a relationship to its user by embedding the User entity like so:

    @ManyToOne
    private User user;
 
So the USER part of the error now kinda makes sense, but now what about BIRTHDAY? Well refer back to listing 1 and take a look at the properties of the User entity. It has an embedded UserKey as its primary key. Listing 4 shows UserKey.

Listing 4: UserKey is the primary key of  the User entity
@Embeddable
public class UserKey implements Serializable 
{
    private static final long serialVersionUID = 131374817387370831L;
    
    @Column(name = "last_name")
    private String lastName;

    @Column(name = "zip_code")
    private Long zipCode;

    @Column(name = "birthday")
    private Timestamp birthday;

    // getters and setters omitted for brevity

There is is! Inside UserKey is the missing BIRTHDAY. So now that it looks like we've identified all of the parts of the exception, let's walk though what's going on.

Address is an entity managed by JPA. As such, JPA scans through all the properties of Address looking for non-@Transient properties to manage. It finds the private User user property. Since User it is an object and not a simple primative, JPA uses make an intelligent guess about the column name for this property and assumes it starts with "user". Then JPA scans the User entity. In it, JPA finds @EmbeddedId UserKey userKey. Because UserKey is an embedded object, JPA now scans it for fields to manage and finds birthday. Putting this all together in hibernate-generated SQL you get ADDRESSES1_.USER_BIRTHDAY. Not very pretty, so what do we do about it?  We the solution is actually very simple.

Solution
To solve this problem, you need to configure JPA with the relationship between the entities. Recall the relationship between the user and address data is a complicated natural foreign key relationship. Figure 2 shows the primary key of App_User is a combination of LAST_NAME, ZIP, and BIRTHDAY.  For App_Address, these three columns are repeated with an addition of a fourth column to make the combination of LAST_NAME, ZIP, BIRTHDAY, and ADDRESS the primary key for App_Address. App_Address also uses its LAST_NAME, ZIP, and BIRTHDAY columns as a foreign key back to App_User. Though this may sound complicated, JPA annotations make it very easy. Listing 5 shows how to define the relationship in the Address entity.


Listing 5: Address relationship with its user
@ManyToOne(optional=false, fetch=FetchType.EAGER, cascade=CascadeType.ALL)
@JoinColumns({
    @JoinColumn(name="last_name", referencedColumnName="last_name", insertable=false, updatable=false),
    @JoinColumn(name="zip_code",  referencedColumnName="zip_code",  insertable=false, updatable=false),
    @JoinColumn(name="birthday",  referencedColumnName="birthday",  insertable=false, updatable=false)
})    
private User user;

In listing 5 @JoinColumn has been introduced (#3). The name property refers to the name of the column in the App_Address table.  The referencedColumnName propery refers to the name of the column in the App_User table. The insertable and updatable properties are self explanatory but critically important so JPA does not duplicate the columns when generating the INSERT and UPDATE statements. And that's it, very simple.


    


November 01, 2013

Quick GlassFish JNDI Custom Resources

Overview

This is a quick overview of using GlassFish JNDI Custom Resources. These are a great way to be able to provide dynamic configuration of your application at run time. When JNDI values are changed, the new values get to all cluster instances and if your code is written to lookup the values then the new values will be found the next time your code is executed by the server.

Creating a GlassFish JNDI Custom Resource

This is very easy.  The screenshot below shows how to do this with the GlassFish administration console. 
The only little trick with creating resources of java.lang.String is then name of the property must be "value".
The example shown below creates a JNDI string property bound to contactUs/emailToAddress.  The purpose of this property is to define what email address should be emailed when a user of your website fills out your company's "contact us" page.  



Getting a Glassfish JNDI Custom Resource Value

Getting a JNDI Custom Resource value from your code is very easy.  The code snippet below shows how.  By manually performing the lookup, you can ensure the code will get the latest and great value out of JNDI every time.  When using @Inject or @Resource that may not happen.
 
String emailToAddress = "";
try {
  InitialContext ic = new InitialContext();
  emailToAddress = (String) ic.lookup("contactUs/emailToAddress");
} catch (NamingException e) {
  throw new RuntimeException(e);
}

That's it. Real simple and easy.

March 29, 2013

A DIV and AngularJS Based Dropdown List Box

Introduction

I have been doing research into using AngularJS.  One of the first things I needed for my website was some nice fancy dropdown list boxes.  Of course I did not want to use regular old <select>, what would be the fun in that.  So I set out to build one using DIVs and AngularJS.  This little demo shows the results of my research.

Download Source Code: div-and-angularjs-dropdown-lists.zip

Demo

Below the demo is running in an IFRAME. It may not display the best. If you want you can visit the full page demo at http://ferris.sourceforge.net/div-and-angularjs-dropdown-lists